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Abstract. Aperiodic crystals may have additional low frequency modes related to the possibility to describe
them in a higher-dimensional space. Dynamics associated with these degrees of freedom is called phasonic,
but there are very different phenomena of this type. A discussion is given of the use of the term. The
relation between phason modes, the crystal structure, and the modulation and sliding modes is discussed.
Finally a relation with frictionless motion is studied.

PACS. 61.44.Fw Incommensurate crystals – 61.44.Br Quasicrystals – 68.35.Ja Surface and interface
dynamics and vibrations

1 Introduction

Quasiperiodic crystals are systems with sharp diffraction
spots on the positions of a Fourier module: its wave vec-
tors k satisfy

k =
n∑

i=1

hia∗
i , (1)

where hi are integers. The vectors a∗
i span the physical

reciprocal space. If the minimal value of n is larger than
the physical dimension the structure is aperiodic. n is the
rank of the module.

Such quasiperiodic structures can be seen as intersec-
tions of periodic structures in n dimensions and physical
space. The periodic structure is constructed as follows.
Consider every vector k of the Fourier module as the pro-
jection of a reciprocal lattice vector ks = (k,kI) in n
dimensions into physical space. The components kI be-
long to the internal or perpendicular space. If ρ̂(k) is the
Fourier transform of the density of the system, the density
function

ρs(r, rI) =
∑
k

ρ̂(k) exp (i(k · r + kI · rI)) (2)

is lattice periodic in n dimensions with as lattice Σ the
direct lattice associated with the reciprocal lattice Σ∗ of
vectors (k,kI). Notice that ρs(r, 0) is the density in the
physical space. The information about the structure in
the aperiodic crystal is mapped into the unit cell in n
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dimensions, but the information is exactly equivalent with
that in physical space.

Examples of aperiodic crystals are incommensurate
modulated structures, incommensurate composites and
quasicrystals. If one constructs the embedding as men-
tioned above, the atom positions in physical space cor-
respond to points of (n − 3)-dimensional objects in the
n-dimensional unit cell (or in the periodic n-dimensional
structure). These objects are called atomic surfaces.

The projection of the n-dimensional lattice Σ of the
periodic structure on the internal space is dense. If (a,aI)
belongs to the lattice this implies

ρs(r, rI) = ρs(r + a, rI + aI) (3)

for a dense set of vectors aI. This means that a shift of aI

in internal space gives the same density function in physi-
cal space shifted over a vector a. Generally, the length of a
is large for small values of aI, but the result is just a shift
of the whole crystal which leaves all distances invariant,
and consequently the energy does not change. Therefore,
the ground state of the aperiodic crystal is infinitely de-
generate. Because the internal space for modulated struc-
tures corresponds to the space of phases of the modulation
function(s) such a displacement in internal space is often
called a phase mode. If the atomic surfaces are smooth the
shifts in atomic positions for such a displacement are con-
tinuous which implies that an infinitesimally slow phase
motion does not cost energy. This means that there is a
zero frequency excitation. For a smooth modulation func-
tion the eigenvector of the corresponding mode is given by
the derivative of the modulation function. It is sometimes
called a phason.
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In this paper the following points will be discussed:

1. The term ‘phason’ is often used in an indiscriminate
way. Can a more precise terminology be used?

2. The relation between phase modes of zero frequency
and the continuity of the embedded structure in higher
dimensions.

3. A zero frequency acoustic mode may have an arbitrary
amplitude. Does the same hold for the zero frequency
phase modes?

In Section 2 phason modes in incommensurate phases and
composites are introduced. In Sections 3 and 4 the linear
phasons and the ground state are studied on the so called
DIFFOUR model. In Section 5 the non-linear phason dy-
namics for this model is discussed. In Sections 6 and 7 the
linear and non-linear dynamics for composites is discussed
in the framework of a double chain model (DCM). The
results remind those of the DIFFOUR model, but the sit-
uation is more complicated. In Section 8 it is argued that
the phason dynamics of quasicrystals is similar to that of
incommensurate composites when the atomic surfaces are
disjoint. In all systems phasonic motion occurs, and the
term is used in various ways. This is discussed mainly in
Sections 2 and 8. Finally a discussion is given in Section 9.

2 Phason modes

The zero frequency excitations besides the acoustic modes
can be considered as uniform fluctuations in the addi-
tional space. One may describe them as well in physical
three-dimensional space. We make a distinction between
modulated crystal phases, composites and quasicrystals.
A displacively modulated crystal is obtained from a lat-
tice periodic structure by a periodic static displacement
wave. In a one-dimensional system the positions of the
atoms in the ground state are given by

xn,j = x0 + rj + na+ fj(x0 + rj + na), (4)

where rj gives the positions in the unit cell of the ba-
sis structure, a is the lattice constant of the basic struc-
ture, and fj is a periodic displacement function with a
period b that is incommensurate with a. Such a structure
may have two zero frequency modes. One is the acoustic
mode given by the displacement

xn,j → xn,j + δ, (5)

and the other is due to the incommensurability. It is
given by

xn,j → xn+p,j − pa ≈ xn,j + εf ′
j(x0 + rj + na), (6)

where pa − qb = ε is a small integer combination of a
and b, such that the fraction p/q is an approximant of the
irrational number b/a. If the derivative of the modulation
function exists, the motion does not require energy and
the excitation has zero frequency.

Composite structures consist of two or more mod-
ulated subsystems with mutually incommensurate basic

structure. For the case of 2 subsystems in one dimension
the positions are given by

xn = x0 + na+ f(x0 + na), f(x) = f(x+ b) (7)
ym = y0 +mb+ g(y0 +mb), g(y) = g(y + a). (8)

Here we consider for simplicity the case that each chain
has only one atom per unit cell of length a, respectively b.
Also in this case there may be two zero frequency modes.
One is given by the displacements

xn → xn + δ, ym → ym + δ, (9)

and the other by

xn → xn+p − pa ≈ xn + εf ′(x0 + na) (10)
ym → ym+q − pa ≈ ym − ε(1 + g′(y0 +mb)). (11)

Again the integer combination ε = pa − qb in the latter
can be chosen to be (arbitrarily) small because of the in-
commensurability. The zero frequency mode correspond-
ing with this has the same character as a phason mode
and exists if the functions f and g are smooth, as will
be discussed in the sequel. Because one subsystem moves
with respect to the other it is also sometimes called a
sliding mode. The two modes (acoustic and phason) are
degenerate.

A zero frequency mode is a linear combination with
arbitrary values of δ and ε. Among all possibilities we
choose to call a mode the phason mode if it conserves
the centre of gravity according to

δ =
ρ2

ρ1 + ρ2
ε,

where ρi is the mass density of the ith subsystem. The
uniform displacement and the phason mode are perpen-
dicular with respect to the usual metric imposed by the
dynamical matrix.

For quasicrystals there is also the same degeneracy:
the energy is invariant under a rigid displacement in both
physical and the additional (perpendicular) space. How-
ever, a zero frequency mode does not exist because the
motion in additional space is associated with finite jumps
in physical space, to be compared with the finite jumps
occurring when a discontinuous modulation wave moves
through a modulated or composite structure.

The acoustic modes and phason modes discussed so far
correspond to rigid translations in physical space and in
additional space, respectively. If the displacements depend
on the physical coordinate as plane waves the phonons and
phasons get a finite wave vector. For modulated crystals

xn,j → xn,j + ε(kna)f ′
j(x0 + rj + na), (12)

and for composites

xn → xn + δ(kna) + ε(kna)f ′(x0 + na) (13)

ym → ym + δ(kmb)−ε(kmb)(1 + g′(y0 +mb)), (14)

for slowly varying periodic functions ε and δ with pe-
riod 1. The frequency then, generally, depends on that
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wave vector and this dependence is given by the disper-
sion relations ω(k). The branches starting from zero then
are also called acoustic modes and phason modes, respec-
tively. They can be seen in the dynamical structure fac-
tor [1]

S(q, ω) ∼
∑

modes ν

exp(−Wν(q))

×
∑
n,j

|q · e(ν, n, j)| exp (iq · n) . (15)

Here e(ν, n, j) is the component of the eigenvector of the
mode ν corresponding to particle j in unit cell n. In lattice
periodic crystals the dispersion curves are seen as ema-
nating from all (evenly spaced) Bragg peaks. In aperi-
odic (quasiperiodic) crystals the Bragg peaks occur on a
dense set. Although the Bragg peaks form a dense set, and
from each Bragg peak emerge two branches, the intensi-
ties of these two branches strongly depend on the crystal-
lographic indices. Thus, phonon branches are visible only
on a discrete set of peaks. The relation between intensi-
ties of branches and crystallographic indices can be used
to assess the type of interaction and eventually distinguish
between various classes of aperiodic crystals [2].

Here we call “phasons” elementary excitations of low
or even zero frequency with eigenvectors that locally can
be seen as a displacement in perpendicular space. Just
as phonons these may be extended or localized, and they
may be damped.

3 Phasons in modulated phases

Elementary excitations in quasi-periodic crystals can be
studied in simple models. Crystals with competing inter-
actions may show a soft mode with incommensurate wave
vector, and the appearance of an incommensurate modu-
lated phase. Models for such incommensurate phase tran-
sitions are the DIFFOUR (discrete frustrated φ4) mod-
els [3]. The simplest one is a linear chain of particles with
displacements xn from an equidistant array na, with po-
tential energy given by

V =
∑

n

(
A

2
x2

n +
1
4
x4

n +Bxnxn−1 + Cxnxn−2

)
. (16)

The ground state of such a system is given by the solu-
tions of

∂V

∂xn
= Axn + x3

n +B(xn−1 + xn+1) + C(xn−2 + xn+2)

= 0. (17)

For high enough values of A the only solution is the un-
modulated chain with xn = 0. For this solution small de-
viations from equilibrium give phonons with a dispersion
relation

mω2 = A+ 2B cos(ka) + 2C cos(2ka) (18)

which has a minimum for

cos(kia) = −B/4C, (19)

provided |B/4C| ≤ 1. Otherwise, the minimum is at ki = 0
or ki = π/a. In general the value of ki is incommensurate.
The value of ω2

k at the minimum becomes zero for a critical
value Ai given by

Ai = 2C +B2/(4C). (20)

For values A < Ai the trivial solution is unstable and there
appears a new ground state which is a modulated phase
with wave vector equal to ki, generally in an incommen-
surate position in the Brillouin zone. For values of A just
below Ai this modulation function is smooth.

The soft modes at ±ki are degenerate. For A < Ai

they combine into two new excitations called the ampli-
tude and the phase mode, or amplitudon and phason. The
latter has the character described by equation (12). In the
region with smooth modulation function the phason mode
has an eigenvector that is the derivative of the modula-
tion function, and its frequency is zero. This is connected
with the degeneracy of the ground state: the phase of the
modulation function is free. Therefore, a motion of the
modulation function with respect to the lattice with in-
finitesimal speed will not cost any energy.

We check this numerically. An appropriate re-scaling
of the coordinates and the energy leads to the potential
energy

V =
∑

n

(
x4

n

4
− cx2

n

2
+ (xn − xn+1)2 + d(xn − xn+2)2

)
,

(21)

where c and d are the new model parameters. For nega-
tive values of d the ground state of the system may be
incommensurate. The basic structure has a lattice param-
eter equal to a. Notice that the change of parameters
from A,B,C to c, d is such that A and c have opposite
sign.

For the numerical study chains with 557 particles were
used for several values of c and for d = −0.4. Periodic
boundary conditions were taken. In the first step, the
minimal-energy configuration was determined. It is a mod-
ulated structure with a period b = 557a/79 ≈ 7.05 atoms.

The spectrum of the elementary excitations is given by
the eigenvalues λj = mω2

j of ∂2V/∂x∂x. The lowest fre-
quency ω0 ≈ 10−5 for c < 0.5 is small but non-zero be-
cause of the finite size. The corresponding eigenvector is
proportional to f ′(x). Figure 1 shows the initial part of
the spectrum. At c = 0 and c = 0.5 the dispersion is lin-
ear. However, the density of states is higher at c = 0.5.
The value of

∫
f ′(z)2dz is larger and the phason velocity

smaller. At the critical value of c the modulation function
becomes discontinuous, and the phason velocity vanishes.
A gap forms at larger c, as illustrated in Figure 1.

4 The discommensuration transition

The discussed transition from a continuous to a discontin-
uous modulation function implies that the atomic surfaces
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Fig. 1. The frequencies of the lowest modes in the DIFFOUR
model for 3 values of the parameter c: 0, 0.5 and 0.6. For c = 0.6
there is a phason gap.

are no longer smooth. This may happen in modulated
phases and in composites. In quasicrystals the atomic sur-
faces are generally discrete bounded objects. Therefore,
the positions of the atoms are not continuous functions
of the internal coordinate. For the two other classes of
quasiperiodic systems these functions depend on the ex-
ternal parameters like temperature and pressure.

In incommensurate modulated crystals the modulation
usually sets in at a second-order phase transition. Close
to the phase transition the amplitude of the modulation is
small and the function is smooth. However, further away
from the transition line a transition to a discontinuous
modulation function may take place. In the structure these
discontinuities correspond to domain walls between do-
mains with a structure that is close to a commensurate
superstructure. The walls are called discommensurations
and the transition may be called discommensuration tran-
sition. In the literature it is also known as the transition
by breaking of analyticity [4]. This transition has partic-
ularly well been studied for the incommensurate version
of the Frenkel-Kontorova (FK) model [5–7]. This model
consists of a harmonic chain on a periodic substrate. Its
potential energy is

V =
∑

n

(
α

2
(xn − xn−1 − a)2 +

λb

2π
cos(2πxn/b+ φ)

)
.

(22)

The ground state for this model has positions in the chain
satisfying

α(2xn − xn−1 − xn+1) − λ sin(2πxn/b+ φ) = 0. (23)

For small values of λ the solution is xn = f(nq + ψ)
where f is a smooth periodic function. For values of λ
larger than a critical value λc the function f shows dis-
continuities.

Analogous transitions appear in other models for ape-
riodic systems, like modulated crystal phases and incom-
mensurate composites. For modulated crystal phases the
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Fig. 2. Modulation function for the DIFFOUR model
(Eq. (25)) for the same 3 parameter values as in Figure 1.
For c = 0.6 the modulation function is discontinuous.

transition has been studied numerically in the discrete
frustrated φ4 (DIFFOUR) model.

Using the same values of the parameters c and d as
in the previous section the shape of the modulation func-
tion was calculated. Figure 2 shows the displacements xn

plotted as function of the reduced number na mod b. This
is the graph of the modulation function f . It is almost
sinusoidal for c = 0, but less regular (although still con-
tinuous) for c = 0.5. At c = 0.6 the continuity of f breaks
down, and for larger values of c the continuity is broken
at several points. The transition from a smooth to a dis-
continuous modulation function occurs at the same value
of c for which the phason gap opens. This is the discom-
mensuration transition.

For incommensurate composites a similar transition
occurs. This will be discussed using the double chain
model (DCM) in Section 6. In all the cases we shall call
this transition the discommensuration transition.

5 Modulation function displacements:
non-linear dynamics

The phason frequencies are solutions of the eigenvalue
problem of the dynamical matrix, i.e. solutions in a
harmonic approximation. For displacements that are
no longer infinitesimal non-linear terms become impor-
tant. Although the displacement still connects degenerate
ground states, there is no a priori reason that the phason
would not couple to other modes for non-zero velocities.
We consider the case that the phason is excited such that
the amplitude is no longer infinitesimal. This would cor-
respond to non-linear, large amplitude modes. Then the
motion can be considered as a displacement of the modu-
lation function f(kna) with respect to the lattice. In the
calculation particle n is given an initial speed proportional
to the eigenvector un of the phason, i.e. equal to ε f ′(kna).
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For a sinusoidal modulation function U cos(kna) this ve-
locity is

v = ε
√

2a/L sin(kna)

if L = Na is the length of the normalization domain:∑
n |un|2 = 1. This can be compared to the phason veloc-

ity vf , the slope of the phason branch which in the model
is equal to

√
1/d− 16d. The motion of the excitation then

is governed by non-linear equations. It is no longer a har-
monic excitation, and we call it a phase wave.

We study the dynamics of phase waves in the incom-
mensurate phase using the DIFFOUR model. Although
we deal with a 1D system, the picture would not be very
different in higher dimensions, because we shall not be
concerned with (strongly dimension-dependent) fluctua-
tion phenomena.

In the parameters c and d the Lagrange function has
the following form.

L =
∑

n

(
mẋ2

n

2
− x4

n

4
+
cx2

n

2

− (xn − xn+1)2 − d(xn − xn+2)2
)
. (24)

Here xn and ẋn are the displacements and velocities of the
particles of mass m, whereas c and d are model parame-
ters.

Let us first consider a wave propagating in a system
at zero temperature. The ansatz for the dynamics of the
particles is that they move according to a wave traveling
through the crystal, This means

xn(t) = f(na− vt), (25)

where v is the velocity of the wave, and the envelope f
is a periodic function with some irrational period b, just
as a moving modulation wave. For a non-zero velocity the
modulation function should be continuous for the validity
of the calculation that follows here. A further condition is
that it has finite second derivative to ensure that the ac-
celeration remains finite. With equation (25) substituted
in equation (24) the Lagrangian function becomes

L =
∑

n

(
mv2f ′(na− vt)2/2 − f4(na− vt)/4

+cf2(na− vt)/2 − (f(na− vt) − f((n+ 1)a− vt))2

−d(f(na− vt) − f((n+ 2)a− vt))2
)
. (26)

All arguments of the periodic function f can be reduced
to the first period: f(z) = f(z̄) with z̄ = z mod b. Since
b is irrational, the reduced arguments fill the range from
0 to b uniformally. For a smooth function f this allows to
replace the sum by an integral over the first period.

L =
N

b

∫ b

0

(
mv2f ′(z)2

2
− f4(z)

2
+
cf2(z)

2
(27)

− (f(z) − f(z + a))2 − d(f(z) − f(z + 2a))2
)

dz,

where N is the total number of particles.
The equations of motion are satisfied if the action is

extremal. In our problem the extremum is a maximum
as one sees as follows. From the static case (v = 0) the
potential energy takes a minimal value in the ground state.
From the last formula it follows that L does not depend
on time. Therefore, L is maximal in our case. The shape
and period of f should fulfill this requirement. In general,
they depend on the velocity of the wave because v enters
equation (27).

For the trial function f = f0 sin kz one obtains that(
c

4
− 1 + cos ka− d+ d cos 2ka+

mk2v2

4

)
f2
0 − 3

8
f4
0

(28)

is maximal, which gives a transcendental equation for k.
It has non-trivial solutions ±k0 only if

2 + 8d+mv2 < 0. (29)

The quantity f0 has a non-zero value only if

c

4
− 1 + cos k0a− d+ d cos 2k0a+

mk2
0v

2

4
> 0. (30)

These conditions determine the possible speed of the wave.
They are valid if the modulation function f is close to a
sinusoidal function. This holds for small amplitude f0, i.e.
if the left hand side is small. This shows, under the given
conditions, the existence of a travelling wave solution to
the equations of motion in the continuum approximation.
The solution has the character of a solitary wave.

For zero temperature the wave solution is a solution
of the equations of motion in the continuum approxima-
tion. This means that the wave may propagate for a very
long time without energy loss. An important question is
whether a finite temperature would introduce friction or
not. Numerical calculations show that for small velocities
the wave still moves with very low dissipation.

We argue here that, at least for small velocities, the
friction is almost absent if defects are neglected. The main
reason is that the low-lying excitations show a linear dis-
persion law if (and only if) the modulation function is con-
tinuous. Although the criterion for superfluidity [8] fails in
a crystal structure we expect low friction for a linear dis-
persion. To illustrate this statement, let us consider the
spectrum of the elementary excitations. As one can see,
the low-lying excitations are associated to long-periodic
shifts of the modulation. We neglect here fluctuations of
the amplitude of the modulation. Denote the slowly vary-
ing profile of the shift as F (n, t). Then

xn = f(na+ F (n, t)). (31)

In leading order the kinetic energy of the chain is

∑
n

mf ′(n)2

2

(
dF
dt

)2

≈ m

2b

∫ b

0

f ′(z)2
∑

n

(
dF
dt

)2

dz.

(32)
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Fig. 3. The modulation function and the reduced velocity
function after many time steps in the equations of motion.
The spread is caused by a small random noise.

In the last transition we took an average over the mod-
ulation period, as F is supposed to be a slowly varying
function.

The inhomogeneous shift produces a change of the lo-
cal period: bloc = b(1 + dF/dn). Although the homoge-
neous shift of the modulation does not cost potential en-
ergy, the change of the local period does so. As the period b
corresponds to the energy minimum, the change of the po-
tential energy is quadratic in the change of bloc. Therefore,
the part of the Lagrange function is associated with the
long-period shift F , and is of the form

∑
n

(
m

2b

∫ b

0

f ′(z)2
(

dF
dt

)2

− εp

(
dF
dn

)2
)
, (33)

where εp is a positive constant. In the case of a continu-
ous f this leads to a linear dispersion. On the other hand,
if f is discontinuous, the integral

∫
f ′(z)2dz diverges, indi-

cating that the dispersion is no longer linear. However, for
linear dispersion we expect a low friction. We shall check
this numerically.

When the ground-state properties are determined, we
switch to a system with a propagating wave. The initial
configuration was taken to be that of the stationary con-
figuration. The velocities were set according to

vi = vf ′(xi), (34)

where v is a small constant. Then the equations of motion

mẍn = axn − x3
n − 2(2xn − xn+1 − xn+1)

− 2d(2xn − xn−2 − xn+2) (35)

were integrated numerically using a fourth order Runge-
Kutta method with time step 0.03. In equation (35) no
explicit damping term has been taken into account. Of
course, there will be, in a real system, damping. However,
transfer of energy to the phonons is possible in the model,

Fig. 4. The speed of the traveling solitary phase wave as func-
tion of time for two initial velocities: 0.3 and 0.7. For the higher
speed the kinetic energy is distributed over all phonon modes.

because of the non-linear term. Additional damping then
comes from defects. These have not been considered, be-
cause we want to know the intrinsic contribution to the
damping. The question was, is there a propagating phase
wave in an ideal aperiodic crystal?

In each integration step an additional term wri was
added, where w is a small number, and ri is a random
number in the range from −0.5 to 0.5. The term mimics
a non-zero temperature for the system. Figure 3 shows a
typical profile of xn and vn after a large number of inte-
gration steps. The shape of the modulation function has
not changed which means that the wave moves without
distortion.

To study the loss of energy we calculate the average
velocity as a function of time. The value of v̄ is equal to the
velocity of the solitary phase wave for the case of an ex-
actly sinusoidal modulation function. In the general case,
v̄ is proportional to the velocity of the solitary phase wave.
The data for m = 1, c = 0, d = −0.4, v = 0.03, w = 0.04
are presented in Figure 4. The value of v̄ stays almost un-
changed for a long time, reflecting the absence of friction.
The few percent drop is probably due to the finiteness of
the chain. An increase in v and w destroys the frictionless
motion. As an example the curve for v = 0.07, w = 0.04 is
given in Figure 4 as well. In this case, the phase velocity
goes to zero after some time.

This motion without coupling to the phonon bath has
been found also for the solitary wave excitations in the
low-temperature commensurate phase in the DIFFOUR
model [9]. For speeds lower than the phason velocity (the
slope of the phason branch) the solitary wave moves with-
out energy loss. For higher speeds there is energy loss to
the phonon bath, and at sufficiently high speeds the wave
may decay into two solitons and an anti-soliton.
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6 Phasons and sliding modes
in incommensurate composites

A model for incommensurate composites is the DCM
(double chain model). It is a one-dimensional model with 2
parallel chains with particles at positions xn in one chain
and ym in the other, and with potential energy

V =
∑

n

V1(xn − xn−1 − a)

+
∑
m

V2(ym − ym−1 − b)

+
1
2

∑
nm

W (xn − ym). (36)

The intra-chain potentials Vi can, for example, be cho-
sen as

V(x) = αx2/2, V2(y) = βy2/2, (37)

and the inter-chain potential W as a Lennard-Jones po-
tential. If the distance between the (parallel) chains is d
the latter potential is given by

W (r) = λ

((
σ2

r2 + d2

)3

−
(

σ2

r2 + d2

)6
)

· (38)

The ground state follows by minimizing V with respect
to {xn} and {ym} and the eigenvibrations from the eigen-
value problem for the dynamical matrix. In the incom-
mensurate case a/b is an irrational number. In the cal-
culations this is replaced by a rational approximant such
that Na = Lb is the unit cell of the periodic solution. In
this approximation the eigenfrequencies follow from the
eigenvalues ω2 of the (N+L)×(N+L) dynamical matrix.

The ground state of the system has positions

xn = x0 + na+ f(na+ φ), ym = y0 +mb+ g(mb+ ψ),
(39)

where f is a periodic function with period b and g a peri-
odic function with period a. The character of the func-
tions f and g depends on the value of the interaction
parameter λ. For small values of λ both functions are
smooth, but for λ above a critical value the modulation
functions become discontinuous, just as, e.g., in the in-
commensurate FK model. The change of the modulation
function f with varying values of the coupling parame-
ter λ is given in Figure 5. The change in g is similar. Both
functions become discontinuous for the same value of λ.

For λ < λc there are two eigenmodes with zero fre-
quency (in the incommensurate case). One is the acoustic
displacement mode, the other the shift mode describing
the displacement of one chain with respect to the other.
This is not a rigid displacement, because the distances be-
tween particles change when the chains move with respect
to another. In the commensurate approximant the first
still has zero frequency, but the second is separated from
the first by a gap that goes to zero in the incommensu-
rate limit. In the commensurate approximant two phonon
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Fig. 5. The modulation of one chain in the DCM, for vary-
ing values of the inter-chain coupling. The dotted curve is the
modulation function for a value for which there is a phason
gap.

branches emanate from the origin in the Brillouin zone.
The eigenvector of the second mode is the derivative of
the modulation function. Because it corresponds to an in-
finitesimal shift of the phases of the modulation function,
it can be called the phason mode, and the corresponding
branch is the phason branch.

If λ exceeds the critical value the modulation func-
tions are discontinuous, the only zero frequency mode is
the acoustic mode, the other mode (previously the phason
mode) gets a non-zero frequency and its eigenvector is no
longer the derivative of the modulation function [10,11].
The modulation function tends to a piece-wise linear func-
tion. The jumps in the function correspond to discommen-
surations and the eigenvector of the second excitation cor-
responds to vibrations of these discommensurations. For
still higher values of λ the frequency of the mode rises
sharply and it is no longer the second mode that has the
character of a sliding mode. From this point on the slid-
ing mode can not unambiguously be identified. The defini-
tion used is then the following. Consider the (normalized)
eigenvectors of the phonons: ε(k, i) (i = 1, . . . L+N). We
take as definition that the phason mode is the vibration
for which ∣∣∣∣∣ 1

N

N∑
i=1

ε(0, i)− 1
L

N+L∑
i=N+1

ε(0, i)

∣∣∣∣∣
has the maximal value.

The DCM has essentially 2 parameters: κ1 = λ/α
and κ2 = λ/β. As discussed in [10], and [11] there ex-
ists in the κ1−κ2 plane a line separating the domain with
smooth modulation and zero frequency phason from that
with a discontinuous modulation and phason gap. An in-
commensurate solution of the DCM can be embedded in
two-dimensional superspace as follows.

xn → (x0 + na+ f(x0 + na+ t), t) (40)

ym → (y0 +mb+ t+ g(y0 +mb+ t), t).
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Fig. 6. Embedding of the ground state configuration of the
DCM in two-dimensional superspace for the DCM with dis-
continuous modulation function.

An example is given in Figure 6 for a discontinuous mod-
ulation function. Notice the similarity between the latter
and the embedding of a quasicrystal, i.c. a Fibonacci chain
which consists also of disjoint bounded atomic surfaces.

It is the term t in the first component of ym(t) that
is at the origin of the sliding character of a phason. A
change in internal variable t shifts the 2 subsystems with
respect to each other. This is different from incommen-
surate displacively modulated crystals, where a phason is
not a sliding motion.

7 Sliding dynamics in incommensurate
composites

For an incommensurate composite with a smooth modu-
lation function the ground state is degenerate. The reason
for this is that the structures obtained for 2 parallel shifted
physical spaces are the same, up to a translation, if there
is a lattice translation in superspace that connects them.
Since the projection of lattice points on internal space is
dense, the positions of the physical space with essentially
the same configuration (i.e. differing only by a translation)
are dense in internal space. For smooth atomic surfaces
this means that a shift in an internal direction does not
change the potential energy. A consequence of this is the
absence of a phason gap if the inter-system interaction is
weak enough. However, this does not mean that a motion
of one subsystem with respect to another does not couple
to phonons, or does not loose energy. This is a problem of
non-linear dynamics in incommensurate composites.
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Fig. 7. Momentum of chain 2 of the DCM at v = 0.5 as
a function of time in the case that the modulation function
is smooth. The system continues without change till at least
t = 10, 000.)

To study sliding modes beyond the harmonic approxi-
mation we integrate numerically the equations of motion.

m1ẍn = − α(2xn − xn+1 − xn+1)

+
∑
m

W ′(xn − ym) − γ1ẋn + F1 (41)

m2ÿm = − β(2ym − ym+1 − ym−1)

−
∑

n

W ′(xn − ym) − γ2ẏm + F2.

Here Fi is an external force on chain i and γ the friction
coefficient due to additional effects, like damping caused
by defects. Just as in the case of the modulated phase,
we shall consider here only the intrinsic terms and take γ
equal to zero. Also Fi is taken to be zero. As initial config-
uration xn(0), ym(0) is chosen the static equilibrium con-
figuration. The initial velocities are a (small) factor times
the eigenvector components of the sliding mode. The dif-
ference of the velocities of the centers of mass of the two
chains (P2 − P1) is plotted as function of time.

For the case of a smooth modulation function examples
are given in Figures 7 and 8. For small initial momentum
for chain 2 and zero initial momentum for chain 1, the
momentum of the first oscillates lightly around a constant
value. However, for higher speed the energy of this mode
decreases and is distributed to the phonon bath. The sys-
tem is Hamiltonian, but the Poincaré recurrence time for
recovering the centre of mass energy is presumably very
large. This energy is practically lost to the phonon bath
and we may thus speak of damping. One can conclude
that there is a dynamic transition from a situation with
zero or very low energy dissipation in the internal degrees
to a situation (at higher velocities) where the center of
mass energy is rapidly transferred to the internal degrees
of freedom, the CM-motion remaining is due to the par-
tioning of the energy over the modes.
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Fig. 8. The kinetic energy of both chains in the DCM as a
function of time, for the same interchain coupling as in Fig-
ure 7, but for v = 1.5. The kinetic energy per particle tends to
the same value in both chains.

A similar coupling is present in the case of a discon-
tinuous modulation function. Starting with initial momen-
tum P for chain 1 and zero for chain 2, the first decreases
and starts oscillating. There is an exchange of kinetic en-
ergy between the two chains, as illustrated in Figure 9.
When the inital velocity exceeds a critical value sliding
occurs, but this is damped.

Recently the dynamics and damping of modes in in-
commensurate composites was studied in [12]. There the
damping was put in by hand, and its consequences were
studied. In the present paper there is no damping fac-
tor (γ in Eq. (41) is zero), and only intrinsic damping can
occur. It is shown that for weak inter-chain coupling this
intrinsic damping vanishes. This means that the damping
considered in [12] has its origin in other sources, like the
coupling to defects.

Figures 7 and 8 show that also in this case the slid-
ing mode may move over distances beyond the harmonic
approximation with very little energy loss if the initial ve-
locity is small enough. The physical explanation of the low
coupling to the phonon modes will be studied in a sepa-
rate paper, because in the process the particular structure
of composites, and not the general properties of aperiodic
crystals plays a role.

8 Phasonic degrees of freedom
in quasicrystals

In this section we compare the internal degrees of freedom
in modulated and composite incommensurates with those
in quasicrystals. We review some results from the litera-
ture. The fact that the atomic surfaces of quasicrystals are
disjoint means that in the dynamics they will be compara-
ble to incommensurate composites. In particular, it means
that phason motion is strongly damped or even diffusive.
However, in this field the word ‘phason’ has been used in
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Fig. 9. Exchange of kinetic energy between both chains in the
DCM for a coupling which gives a discontinuous modulation
function, at low speed. Solid and dashed curves: kinetic energy
of the two chains, dotted curve: momentum of the second chain.

again a different fashion. We briefly discuss the terminol-
ogy here.

Quasicrystals can be embedded into a higher-
dimensional space, because they are quasiperiodic. Also
in this case motion in the internal space is related to mo-
tion in physical space. In the quasicrystal community the
word phason is used in at least three different ways. Al-
though often it is clear what is meant, this situation may
easily lead to confusion.

If the physical space is moved parallel to itself in su-
perspace intersections of atomic surfaces with physical
space, which determine the positions of the atoms, will
vanish and new intersections will appear. This means a
finite jump of a particle from one site to another. This is
called a phason flip or jump. The density of these jumps
will increase with increasing shift of the physical space.
Therefore, these phason jumps can be considered as local
jumps. Because a jump will change the local configuration,
the distances will change and other particles may come in
a position favourable for a phason jump. So the phason
jump may diffuse. This process of self-diffusion has been
studied by Kalugin and Katz [13]. When the phason jumps
are independent, they contribute to the diffuse scattering.

A collective motion occurs if a wave propagates along
the physical space with displacement in the internal di-
rection. This would be a propagating phason. In the long-
wavelength limit these can be described as elastic waves
connected with the phason components of the generalized
elastic tensor ε. The generalized elastic tensor has phonon-
phonon, phason-phason and phason-phonon components.
respectively εEE , εII and εEI . An elastic wave with polar-
isation in the internal space is

uµ(r, t) = u0
µ exp (i(k · r − ωt)) , (42)

where uµ satisfies the eigenvalue equation

ρω2u0
µ = εII

µjν`kjk`u
0
ν . (43)
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Here k, ` = 1, 2, 3 and µ, ν = 4, . . . , n in n-dimensional su-
perspace. In general, these phasons are coupled to phason
flips and usually overdamped. The theory of generalized
elasticity is essentially that of the new hydrodynamical
modes, associated with the degeneracy of the ground state.
(Cf. [14].)

Finally, locally a quasicrystal structure may experience
a deformation towards a locally periodic structure. Even-
tually, this may lead to an approximant. The associated
picture in superspace is the tilting of the physical space.
A static deformation of this type is called linear phason
strain and may be characterized with a strain tensor [15].
Such a phason strain is observable in high-resolution elec-
tron images or in the diffraction pattern.

Very often the word phason is used for all three kinds of
phenomena, but it would be better to make a distinction,
keep the phason just for the propagating wave, and use
otherwise phason flip and (linear) phason strain.

Although there are no propagating phason modes of
zero frequency for quasicrystals, the question whether slid-
ing modes exist may be asked for the situation where there
is a lattice periodic crystal on a quasicrystalline substrate.
This problem has been studied for a generalized Frenkel-
Kontorova model with aperiodic substrate in [16]. The po-
tential energy for this generalized FK-model is given by

V =
∑

n

(α
2

(xn − xn−1)2

+λ (σ cos(2πxn/b1) + (1 − σ) cos(2πxn/b2))) . (44)

If the length scales a, b1, and b2 are mutually incommen-
surate the structure of the ground state is, generally, of
rank three. Another model for a two-dimensional lattice
moving over an aperiodic substrate, is specified by the
substrate potential

V (r) =
5∑

j=1

λ cos(kjr), (45)

where the 5 vectors kj in the plane may angles of 2π/5
between them.

The generalized FK-model (44) has a quasiperiodic
ground state that can be embedded as a periodic struc-
ture in 3 dimensions. Hence atomic surfaces are 2D. This
implies that a discontinuity in the modulation functions
does not necessarily yield a disconnected atomic surface.
For strong interactions this will be the case, but there is
an intermediate coupling range where the atomic surfaces
are multiply connected. This may have an influence on
the phason gap as well. For the 2D model (Eq. (45)) the
dimension of the atomic surface is four, and there may be
similar phenomena. Still another feature of the model of
equation (45) is the coupling between motion along the x-
and the y-axes. Since this goes beyond the questions we
have asked here, these models will be discussed elsewhere.

9 Discussion and conclusions

In quasiperiodic systems particular dynamical phenomena
occur related to the motion of the crystal in internal space.

Because for incommensurate modulated crystals the inter-
nal space can be interpreted as the space of the phases of
the modulation waves, it has become custom to call these
motions phason motions. The name, however, refers to
very different situations.

In incommensurate modulated phases a harmonic ex-
citation may occur with an eigenvector that corresponds
to an (infinitesimal) shift of the modulation wave with
respect to the crystal. For small modulation amplitude,
when the the modulation function is smooth, the fre-
quency of this excitation is zero. In commensurate ap-
proximants of high order, i.e. where the modulation wave
vector has as reciprocal lattice coordinates fractions with
a (relatively) large denominator, the frequency of the ex-
citation is still very low, but non-zero.

Starting from the equilibrium state with an initial ve-
locity that is proportional to the eigenvector of the excita-
tion, the modulation wave moves with a non-zero velocity
with respect to the crystal. Below a critical speed the dis-
sipation is zero although the motion is no longer harmonic.
If the speed exceeds a critical value dissipation sets in, and
energy is transferred to other phonon modes.

If the modulation function is discontinuous, which oc-
curs far from the transition to the incommensurate state,
still an excitation can be found with eigenvector corre-
sponding to a shift of the modulation wave, but its fre-
quency is non-zero. Giving the modulation wave a non-
zero velocity the motion is pinned for low enough initial
speeds. When the initial speed exceeds a critical value dis-
sipation sets in.

For a crystal on a rigid periodic substrate there is also
a harmonic excitation with zero frequency when the crys-
tal and the substrate are incommensurate and the inter-
action between crystal and substrate below a threshold
value. In this case the crystal is modulated with a smooth
modulation function. The eigenvector of the harmonic ex-
citation corresponds to a shift of the crystal with respect
to the substrate. When the crystal is given an initial speed
the coupling with the phonons in the crystal is small and
the energy dissipation is low. In this case the motion can
be called a sliding mode.

When the interaction is larger than the threshold value
the modulation function becomes discontinuous. In this
case the crystal is pinned for small velocities and dissipa-
tion via the phonons occurs for larger speeds.

For an incommensurate composite crystal the situation
is very similar to that for a crystal on a rigid substrate.
A sliding mode exists for small interaction between the
subsystems. For larger values of the interaction the mod-
ulation function becomes discontinuous, corresponding to
discommensurations. Motion of one subsystem with re-
spect to the other goes via jumps of the particles from
one discommensuration domain to the next.

In quasicrystals the motion in internal space induces
jumps between almost degenerate positions of the parti-
cles. This motion does not have a range where there is
a zero frequency mode. The system immediately is in a
state comparable to the discommensuration region for in-
commensurate modulated and composite crystals.
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The phenomena studied in this paper all are related to
motions in aperiodic crystals that can be described with
displacements in the additional internal space, if one uses
the superspace description. Because this degree of freedom
for an incommensurately modulated crystal can be seen as
the phase of the modulation, it has become custom to call
these phenomena ‘phasons’. One should, however, keep in
mind that very different phenomena have been called by
the same name.

In incommensurate modulated crystals a shift of the
modulation wave with respect to the crystal is an excita-
tion that may have zero frequency. Then there is a zero
frequency phason excitation. The excitations that are local
phase shifts depending on the position in physical space
and belong to a branch for which the frequency tends to
zero in the long-wavelength limit are propagating phason
modes. However, when these excitations are no longer har-
monic, but non-linear, motions described as a shift of the
phase of the modulation may still occur. Here they have
been called modulation waves.

In incommensurate composites there are d acoustic
modes (d is the space dimensionality) with frequency go-
ing to zero for the wavelength tending to infinity, and there
may be harmonic modes described as the (possibly local)
relative motion of the subsystems. Low-frequency modes
of this kind with a long wave length are sometimes called
sliding modes. If the amplitude is not infinitesimal these
motions are no longer harmonic and could be called sliding
motions. When one of the subsystems is rigid, as mimicked
by FK models, the acoustic modes with zero frequency are
no longer present.

For quasicrystals the word ‘phason’ is used in at least
three different ways. The motion of atoms that can be
described as a local shift in perpendicular space are ac-
tually phason jumps. Besides there may be propagating
or diffusive modes corresponding to shifts in perpendic-
ular space. These are directly comparable with phasons
in modulated crystals and composites with discontinuous
modulation functions. Finally the linear strain that (lo-
cally) changes the quasiperiodicity of the crystal is called
phason strain if it corresponds to components in the gen-
eralized elastic tensor that involve internal degrees of free-
dom. Such strains occur in modulated crystals as well.

If an external stress changes the modulation wave vec-
tor, this change may be described as a phason strain. How-
ever, in the community of crystallographers dealing with
modulated structures this terminology is never used.

In this paper the harmonic and the non-linear pha-
son modes of the 3 classes of aperiodic crystals have
been considered and compared. The equations of motion
were Hamiltonian. The total energy of the system is con-
served. Nevertheless, we can give a meaning to friction as a
(practically irreversible) energy transfer from the centre of
mass to the internal phonon degrees of freedom (cf. Refs.
[17,18]). The goal was to study the intrinsic friction. For a
realistic study of linear and non-linear modes the temper-
ature and the dissipation due to defects should be taken
into account as well. Only in that context it makes sense
to distinguish between propagating and diffusive modes.

T.J. wants to thank the University of Marseille at Luminy, in
particular Prof. J. Gastaldi, for the hospitality during his visit
when this work started.
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